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Abstract. The evaluation of model performance is an essential part of hydrological modeling. However, leveraging the full

information that performance criteria provide, requires a deep understanding of their properties. This Technical Note focuses

on a rather counterintuitive aspect of the perhaps most widely used hydrological metric, the Nash-Sutcliffe Efficiency (NSE).

Specifically, we demonstrate that the overall NSE of a dataset is not bounded by the NSEs of all its partitions. We term

this phenomenon the "Divide and Measure Nonconformity". It follows naturally from the definition of the NSE, yet because5

modelers often subdivide datasets in a non-random way, the resulting behavior can have unintended consequences in practice.

In this note we therefore discuss the implications of the "Divide and Measure Nonconformity", examine its empirical and

theoretical properties, and provide recommendations for modelers to avoid drawing misleading conclusions.

1 Introduction

Measuring model performance is a foundational pillar of environmental modeling. For instance, in order to assure that a model10

is suited rainfall-runoff, we have to test how “good” it is. Over time, our community has established a set of performance

criteria that cover different aspects of modelling. These criteria allow us to draw conclusions with regard to the evaluated

model and should therefore exhibit consistent behaviour that follows our intuitions as modelers. However, when we use these

criteria it is important to keep in mind that each one has specific properties — certain advantages and disadvantages — that are

relevant for interpreting results.15

The Nash–Sutcliffe Efficiency (NSE; Nash and Sutcliffe, 1970) is the perhaps most used metrics in hydrology. In this

contribution we show that the NSE exhibits a counterintuitive behavior (which, as far as we can tell, is so far undocumented),

captured by the following exemplary anecdote. A hydrologist evaluates a model over a limited period of time and obtains an

NSE value of, say, 0.77 (Fig. 1, blue partition). Then, a large event occurs and an isolated evaluation for that specific event

results in the slightly worse model performance of, say, 0.75 (Fig. 1, orange partition). One would then expect that the overall20

performance (i.e., a model evaluation over both the the blue and the orange partitions) should be bound by the values obtained

during evaluation over each partition separately. However, the NSE over the entire time series in this example is 0.80 (Fig. 1,

purple partition), which is higher than either partition.
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Figure 1. Example of the part–whole relationship within the Divide and Measure Nonconformity. The blue data partition has an NSE of

0.77, the orange data partition (that contains the peak event) has an NSE of 0.75. However, he overall NSE is 0.8 (violet partition), which is

larger than both individual partitions.

We refer to the phenomenon that the overall NSE can be higher than the NSEs of data subdivisions as the Divide and

Measure Nonconformity (DAMN). A natural question that follows from here is: What is the cause for the “DAMN behavior”25

in the example? To give an answer it is useful to consider the formal definition of the NSE:

NSE = 1−
∑T

t=1(ot− st)2∑T
t=1(ot− ōt)2

, (1)

where o are observations, s are simulations, t is an index variable (usually assumed as time), T is the overall number of

time-steps the NSE is computed over, and ō is the average of the observations.

This is the standard definition of the NSE and it contains several different interpretations for the source of the “DAMN30

behaviour”. One interpretation is that the new event shifted the mean of the observational data (which the NSE uses as a

reference model for comparisons; Schaefli and Gupta, 2007) so that the observational mean became a worse estimate for the

first partition (blue) as a portion of the superset (purple). Another way to explain this behavior is that the NSE gives very

different results for partitions with different variability. The variance of the observations in the second (orange) partition is

higher than the variance of observations over the superset (purple), meaning that the denominator in the NSE calculation is35

higher, resulting in a lower metric. One can imagine taking the squared error term (the numerator of the NSE metric) over only

the second (orange) partition, but using the observational variance from the whole (purple) time period in the denominator,

which would result in a value higher than the actual NSE value in the second period (orange) of 0.75.

The reflection from the previous paragraph concludes our motivational introduction. In what follows we provide a more in-

depth exploration of the DAMN. We structure our exposition as follows: In the remainder of the introduction we discuss related40
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work (Sect. 1.1) and the relevance and potential implications of the DAMN (Sect. 1.2). Afterwards we conduct a case study

where we empirically show that the overall NSE can only be equal or higher then the NSE values of all possible partitions

(Sect. 2 and Sect. 3; Appendix B provides a corresponding theoretical treatment showing that this behavior logically follows

from the definition of the NSE). In the last part of the manuscript we present our conclusion and provide some recommendations

for modellers that follow from our examination of the DAMN (Sect. 4).45

1.1 Related work

The NSE is so important to hydrological modelling that there exist many publications that (critically) analyze its properties

(e.g., Schaefli and Gupta, 2007; Mizukami et al., 2019; Clark et al., 2021; Gauch et al., 2023). Covering the full extent of the

scientific discussion is out of scope for our Technical Note. Instead, we will just mention the few publications that are most

relevant for us: Gupta et al. (2009) use a decomposition of the NSE to show that the criterion favours models that provide50

conservative estimates of extremes. In contrast, our analysis provides a data-based view of how the NSE behaves when data

is divided or combined. Clark et al. (2021) demonstrate inherent uncertainties of estimating the NSE and suggest using dis-

tributions of performance metrics to understand the inherent uncertainties. While their analysis focuses on the difficulties of

finding a hypothetical “true NSE value”, we focus on a specific behavior that concerns the part-whole relationship of the crite-

rion. Lastly, Duc and Sawada (2023) argue that the NSE is not necessarily well suited to compare rivers that exhibit different55

streamflow variances. This aligns with parts of our analysis, since we view the evaluation of multiply rivers as over multiply

data partitions (the same logic as in our introductory example from Sect. 1 applies also here: Whether the mean of a time series

is a better or worse estimator depends mainly on variance of the observations).

Data splitting. Data splitting is common practice in machine learning and data analysis. To our knowledge, the oldest records60

of data splitting go back in the early 20th century (Larson, 1931; Highleyman, 1962; Stone, 1974; Vapnik, 1991). These clas-

sical cases and the approaches that derived from them use random splitting. Thus the DAMN does not play an important role

here (Sect. 1.2 provides an intuition for as to why). In hydrology, there exist two common situational (i.e., non-random) data

splits: (1) the spatial data-split between catchments (e.g., Kratzert et al., 2019; Mai et al., 2022) and (2) the temporal data-split

for validating (for a recent discussion see Shen et al., 2022). Regarding (1), Feng et al. (2023) recently proposed an ad-hoc re-65

gional data partitioning for model evaluation. A perhaps more principled form of this technique can be found in the data-based

splitting that have been put forward independently by Mayr et al. (2018) and Sweet et al. (2023). Both, on their own terms,

propose to partition the data based on feature clusters. Either way, this type of informed (non-random) splitting is susceptible

to the DAMN. Regarding (2), Klemeš (1986) introduced a-style of two-fold (cross-) validation to hydrology. Inter alia, he

proposed the so called differential split sample test. It is a type of non-random split that subdivides a hydrograph into parts that70

reflect specific hydrological processes — say, low flow and high flow periods. This type of splitting is common in hydrology,

but since it is also an informed (non-random) splitting it is indeed exposed to the DAMN.
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Figure 2. Toy example illustrating Simpson’s Paradox, showing the relationship between the time spent studying and grades. Top: The

“global” evaluation of the data suggests a negative effect of preparation time on the grade. Bottom: The “local” evaluation from splitting

students by exam class shows positive correlation between study time and grades. Evaluators should account for both patterns — the global

and the local — depending on the purpose of the analysis. Adapted from Wayland (2018).

Statistical paradoxes. Statisticians have coined many paradoxes. In particular, the DAMN is closely related to Simpson’s

Paradox (Simpson, 1951; Wagner, 1982). Simpson’s Paradox is an illustration how a possitive statistical associations can be75

inverted under (non-random) data partitioning (Fig. 2). The DAMN can be seen as a special case of Simpson’s Paradox, since

it describes the behavior of model performance metrics when (non-random) partitions of the data are combined (or, vice versa,

when the data is divided in partitions). Similarly, an amalgamation paradox (sensu Good and Mittal, 1987) can be seen as more

general form of Simpson’s Paradox, describes how statistical association increase or decrease under different data combina-

tions. Hence, the DAMN can also be seen as a special case of an amalgamation paradox, where the measured performance80

always can only increase when we combine data.
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1.2 Relevance

Settings. There exist many examples of situations where modellers should be aware of the DAMN. For example: (1) Ap-

proaches that rely on sliding windows (e.g., Wagener et al., 2003). Here, one cannot derive the overall performance from the85

performances over different windows of the data, and NSE values calculated over sliding windows might appear smaller than

the ones calculated over longer time periods of the same data. (2) Aggregating or comparing separate evaluation of different

rivers — for example, as was done by Kratzert et al. (2019). For basins with low runoff variability, the mean is a better estima-

tor than for basins with high variability. (3) Differential-split settings that divide the hydrograph into low flows and high flows

(e.g., Klemeš, 1986). In this case, the low-flow NSE can be prone to having low values because the mean is a good estimator.90

However, high-flow NSEs will often suffer from larger overall errors.

Generality. In this Technical Note we restrict our discussion to the NSE because of its importance and ubiquity. However, the

DAMN is a general phenomena and can occur for other performance criteria. For example, the Kling-Gupta Efficiency (KGE;

Gupta et al., 2009) exhibits similar empirical behavior (we do not show this explicitly in this note, but encourage readers to95

explore it, e.g., by using our code, which provides an implementation of the KGE for testing). That said, simple average-based

metrics such as MSE are not subject to the DAMN (see Appendix B2).

Random partitions. Albeit the DAMN can also occur with random subsets of the data (our theory applies also there; Ap-

pendix B) it is less of a concern in that then, since the independent sampling the overall NSE value should not deviate too100

much from the NSE values of the partitions. The intuition here follows the one given in our exemplary introduction (Sect. 1):

In expectation, the means of two random partitions provide the same reference models.

Limited sample size. For model evaluation more data typically helps. This also holds true for situations where the DAMN is a

concern, since the NSEs will behave less erratic when more data is used (see Clark et al., 2021). However, the DAMN as such105

is not a small-sample problem. It will occur whenever we divide the data into situations that have specific properties (e.g., when

we divide the data along the temperature, while having a model that has a high predictive performance for low-temperature and

low predictive performance for high temperatures). For example, the NSE remains susceptible to the DAMN independently of

how well we are able to estimate the mean (or variance) of the data. That said, for the special case of time splits (for a given

basin) it is indeed possible to argue that the occurrence of the DAMN is only due to limited data: If we had unlimited data for110

each partition, the inherent correlation structure (e.g., Shen et al., 2022) and the extreme value distribution of the streamflow

(e.g., Clark et al., 2021) would not matter and our estimations of the mean (or variance) would converge to the same value for

each partition — assuming no distribution shifts over time. Yet, sometimes we are interested in the performance of a model on

subsets of the full available period, and for these cases no amount of overall available data will save us from the DAMN.

115
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Models with uncertainty predictions. With access to models that do not (only) provide point predictions, but richer forms of

prediction (say, interval or distributional predictions), modelers get access to more model performance criteria. Many of these

criteria are evaluated first on a per sample level (e.g., by comparing the distributional estimation with the observed values) and

then aggregated in a simple additive way (e.g., by taking the sum or the mean). Metrics based on proper scoring rules — such

as the Winkler Score (Winkler, 1972) for interval or the log-likelihood for distributional predictions — or metrics derived from120

information theoretical consideration (such as the cross-entropy) generally follow this scheme and are therefore typically not

susceptible to the DAMN (see Appendix B).

2 Methods

We conduct two distinct experiments. The first experiment is purely a synthetic study. It examines how the overall NSE relates

to different NSE values of the partitions. The goal is to empirically show that the overall NSE can be higher (but not lower)125

than all of the individual NSE values of a partition. In the second experiment, we make a comparative analysis of the NSE

and a derived “DAMN save” performance criterion. This experiment is based on real world data. Our goal is to examine the

implications of the DAMN for a particular example. In the following subsections we explain both parts in detail.

2.1 Synthetic study

Our synthetic experiment demonstrates that the overall performance of a model (as measured by the NSE) is in many cases130

better than what all situational or data split performances would suggest. The setup is loosely inspired by Matejka and Fitzmau-

rice (2017): All data for the experiment derive from a single gauging station (namely, Priest Brook Near Winchendon (USGS

ID #01162500), from Addor et al., 2017).
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Figure 3. Exemplary depiction of the experimental setup. (a) For each model evaluation the data is split into two parts by a runoff threshold

and three NSEs are computed: NSElow for data below the threshold, NSEhigh for data above the threshold, and NSEall for all data. (b) Then,

the interval score is computed as the signed distance of NSEall from the interval between the NSElow and the NSEhigh.

To generate simulations we (1) copied the streamflow observation data, (2) added noise to that observation data, (3) clipped

any resulting negative values to zero (to avoid streamflow that is trivially implausible), and (4) further optimize the resulting135

streamflow values themselves to reach a certain, prescribed NSE by using gradient descent. That is, we modify the data points
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of the simulation (which in itself is just the observation with some noise) along the gradient given our loss function — and

until the warranted performance (say, an NSE of 0.7) is reached. This allows us to build simulations that have defined NSE

values for the data partitions. Specifically, we partition the observed streamflow into two parts: (1) “low-flows” that fall below

a threshold, and (2) “high-flows” that are at or above said threshold. We set the threshold using a desired fraction of data being140

designated as low- or high-flows. For example: w = 0.2 means the 20% smallest streamflow values are contained in the low-

flow partition. We will refer to the NSE of the low-flows as NSElow and the NSE of the high-flows as NSEhigh. We fix low-flow

performance to NSElow = 0.5 using the procedure outlined above (Appendix C2 provides similar results for NSElow = 0.25

and NSElow = 0.75). We vary both w and NSEhigh between 0.1 and 0.9. For each point of the resulting grid we have three NSE

values: (1) NSElow, (2) NSEhigh, and (3) the overall NSEall. We measure the practical effect of the DAMN using the signed145

distance of NSEall to the nearest edge of the NSEs of the partitions (either NSElow or NSEhigh):

Is =





NSEall−NSEmin if NSEall ≤NSEmin

0 if NSEmin < NSEall < NSEmax

NSEall−NSEmax if NSEall ≥NSEmax

, (2)

where NSEmin = min(NSElow,NSEhigh) and NSEmax = max(NSElow,NSEhigh) as shown in Fig. 3.

2.2 Comparative analysis

Our comparative analysis shows the influence of the DAMN by juxtaposing the behavior of the NSE with a derived perfor-150

mance criterion. This criterion is probably the simplest modification of the NSE that renders it “DAMN save”. However, our

intention with the new criterion is not to propose a new metric for hydrologists (even if it could be used as such). Rather, we

want to introduce the criterion as a tool for thought to reason about the DAMN.

The most straightforward NSE modification we found is to use a fixed reference partition for the denominator of the NSE.

That is, instead of re-estimating the observational mean within the NSE for each (new) partition, we first choose a reference155

split and then compute the estimated variance from it (we also explored other, more complex modifications, but found them to

be less insightful. Appendix A provides an example of such an exploration). Given the simple and straightforward nature of

the modification, we refer to the “new” performance criterion as Low Effort NSE (LENSE):

LENSE = 1−
1
T

∑T
t=1(ot− st)2

1
TR

∑TR
t=1(ot− õR)2

, (3)

where t is the sample index (which can but does not necessarily have to be a time index), ōR is the mean of the observations160

from a to-be-chosen reference partition, T are the total number of timesteps in the evaluated partition, and TR are the number

of timestep in the reference partition. In a certain sense, both, T and TR, are a result of the modification, since the different

partitions for computing the errors and the observational variance make it so that the fractions to not necessarily reduce.

The LENSE follows a straightforward design principle: We use a reference set that is independent of the partition to trans-

form the right-hand side of NSE into a special case of a weighted mean squared error. This principle makes the LENSE165
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“DAMN save” because the denominator does re-normalize the squared error for each partition separately (Appendix B3 and

Appendix B4 provide the corresponding formal proofs for the weighted mean squared error and the LENSE respectively).

The choice of the reference partition largely determines its interpretation. If, for example, the mean is supposed to be an

estimate for the (true) mean of an underlying distribution (like, for example, in Schaefli and Gupta, 2007), then we should

use as much data as possible to estimate it. In this case, it would be logical to use all data for the estimation — i.e.: training170

(in hydrology we refer to this partition as the calibration set), validation (in hydrology this partition typically does not exist

or is subsumed into the calibration set), and test (in hydrology we refer to this partition as the validation set). If, on the other

hand, we interpret the mean as a baseline model (like, for example, in Knoben et al., 2019), then it makes sense to use just the

data that was used for model selection also for the estimation of the mean. One could also use the test split as a reference and

recreate the NSE (the crucial difference is then that it is not allowed to update the reference split if new data arrives). Since175

the most convenient choice for such a reference split is the training (calibration) split, we propose to use it for the canonical

application of LENSE (also, this split remains unchanged when new data arrives for the model to be used in the future).

The LENSE is robust against the DAMN by design. Thus measuring its interval score with our our synthetic setup will yield

zero values everywhere. We did indeed try this as a check, but do not show these results explicitly since very little information

is provided (we nevertheless encourage interested readers to explore this by using the code we provide). However, it is still180

insightful to compare how the LENSE and the NSE behave. Specifically, we explore two aspects. To that end we use the model

and real-world data from Kratzert et al. (2019). First, we show how the performance criteria compare when we evaluate them

for the 531 basins from Kratzert et al. (2019). Here, we evaluate NSE as in Kratzert et al. (2019) and use the training period

as reference partition for LENSE. Second, we inspect the overall performance according to the NSE and LENSE related to

the corresponding performances of different hydrological years for an arid catchment. We specifically chose an arid catchment185

here, since the mean of the runoff varies there more considerably between individual hydrological years. As before, we use the

training period as reference partition for the LENSE.

For both parts of the comparative analysis we use the ensemble Long Short-Term Memory network from Kratzert et al.

(2019) as hydrological models, but note that the model choice is not of importance (for comparison, see Appendix C provides

some example cumulative distribution functions for other models).190

3 Results and discussion

3.1 Synthetic study

Based on our synthetic experiment we find that NSEall can be outside of the range of the the NSEs spanned by the partitions

(Fig. 4). Furthermore, the absence of negative interval scores indicates that the lowest-valued NSE of all partitions is a lower

bound for NSEall, which we confirm with theoretical considerations (Appendix B). Similarly, the existence of positive interval195

scores indicates that there is no trivial upper bound for the NSEall below its maximum of 1. We can also see that the interval

scores tend to be highest when the NSEs of the partitions are equal, that is, NSEhigh = NSElow = 0.5. Intuitively from a

statistical perspective, this makes sense: this is where the interval is the thinnest — and due to the lower bound, the NSEall can
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Figure 4. Interval scores Is as defined by Eq. (2). NSElow is set to the value 0.5. NSEhigh (y-axis) and the fraction w of data in the lower

partition (x-axis) are varied between 0.1 and 0.9.

only be above or exactly equal. Interestingly though, the highest interval score is only reached with the largest lower partition

we considered (90% of the data). Here, we do not only have the thin interval, but this is also the situation where we would200

expect that the mean of the high-flow data is the furthest from the mean of the low-flows (since the mean of the low-flows does

not change much with the additional high-flows, while the highest high-flows have a substantially higher mean than the lower

ones). Thus, when we introduce the high-flow data into the NSEall computation it yields the largest difference.

3.2 Comparative analysis: NSE and LENSE

The comparison of the NSE and the LENSE for the LSTM ensemble and the 531 basins from Kratzert et al. (2019) shows that205

the LENSE tends to yield lower values than the NSE, except for the best performing basins (Fig. 5). There, the LENSE values

are slightly higher than the NSE values. However, since the performance on these basins is already very close to the theoretical

best value (which is 1 for both criteria) the differences there are tiny.

For the yearly evaluation on an individual basin the NSE can vary substantially (Fig. 6). We note first that the LENSE

exhibits less variations over the years than the NSE. Further, we can see the overall LENSE is nicely enclosed within the210

the values from the individual years — while the overall NSE is not. For four years the NSE values fall below 0.0, and for

two of the four they are below −0.5. These values are of particular interest, because the overall NSE is above 0.7. A naive
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Figure 5. Empirical cumulative distribution functions of the NSE (black, dotted line) and the LENSE (green line) for the 531 CAMELS

basins and the LSTM ensemble from Kratzert et al. (2019).

interpretation would suggest that the model degrades in performance in these years. However, a comparison to the respective

LENSE values indicates that what we see here is largely an effect of the DAMN.

Another interesting phenomenon is that the NSE values from three hydrological years are higher than the corresponding215

LENSE values. Especially interesting here is that the worst LENSE values (-0.5) corresponds to an NSE that is above 0.0,

which is far away from the supposed worst performance in terms of the NSE. This suggest that this year had a relatively high

streamflow variance, with a relatively bad simulation.

To conclude, we re-emphasize that the purpose of the LENSE is not to propose a new metric or to replace the NSE. The

performance values we gain from LENSE should not be considered “more true” than those of the NSE. Rather, they show220

different aspects of the model behavior that are in the data, but easily overlooked if one only focuses on the NSE alone.
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Figure 6. Comparison of NSE and LENSE in an arid basin. The colored dots show the performance for different hydrological years in

the validation period; the crosses show the respective performances for the entire validation period. The large downward variability of NSE

values exists because for some years the mean becomes an extremely good estimate for the daily runoff within certain periods. The LENSE,

on the other hand, does not recompute the mean in the denominator for each validation year and has a stable estimation of the observational

variance (see Eq. (3)). It is therefore more stable and less susceptible to such outlier years.

4 Conclusions

This contribution examines a part-whole relation that we coin “Divide and Measure Nonconformity” (DAMN). Specifically,

the DAMN describes the phenomenon that the NSE of all the data can be higher than all the NSEs of subsets that together

comprise the full dataset. That is, the global NSE can show counter-intuitive behaviour by not being bounded by the NSE225

values in all it’s subsets. From a statistical point of view, the DAMN can therefore be seen as a sort of amalgamation paradox

(Good and Mittal, 1987); and despite its counterintuitive appearance, the behavior can be well explained. Our goal with this

Technical Note is not to eliminate the DAMN, but rather to make modellers more aware of it, explain how it manifests itself,

and provide tools to check and think about it.

If we study model behavior in specific situations, we need to be aware of the DAMN. As an example, take an evaluation230

exercise where the model reaches very low (even negative) NSE values for an arid catchment, while obtaining high NSE

values for a catchment with pronounced seasonality. Our analysis suggest that in this case the relative performance does not

necessarily suggest model failure, but could also be related to the DAMN, since the mean is a very strong baseline for the arid

catchment (which induces erratic NSE behavior).

Albeit our discussion revolves almost exclusively around NSE, many performance criteria are “DAMN susceptible”. As235

demonstrated by our introduction of LENSE (a pseudo-performance criterion that serves as a thinking tool in our discussion),

the strength of the effect depends mainly on the design of a given criterion. If a performance criterion is prone to the DAMN it

implies that we cannot infer the global performance from looking at local performances.
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With regard to follow-up work, we believe that our experimental setup suggests an interesting avenue for inquiry, which

we shall call “NSE kinetics”. That is, to study how easy it is to improve or worsen the NSE by changing the observations or240

simulations with a given budget or constraints. For example, it might be easy to improve (worsen) the performance for basins

where a model is weak by randomly improving some time points (by just adding noise). However, if one wants to improve

(worsen) the simulation for a basin with pronounced seasonality and large amounts of high-quality data it might require a larger

budget and changes to specific events. So far, scientists have studied the sensitivity and uncertainty of the NSE (e.g., Wright

et al., 2015; Clark et al., 2021, respectively). However, as far as we know, no one has yet examined a principled approach that245

is able to quantify the ease of change with respect to a given direction.

We conclude with the observation that the existence of phenomena like the DAMN underlines the importance of evaluating

models with a range of different metrics — preferably tailored to the specific application at hand (Gauch et al., 2023). On top of

that, we would like to push the community (and ourselves) to also always evaluate models with regard to the predictive uncer-

tainty when doing model comparisons and benchmarking exercises (e.g., Nearing et al., 2016, 2018; Mai et al., 2022; Beven,250

2023). Typically, this will result in an additional workload for modellers, since it often means that a method for providing

uncertainty estimates needs to be built (on top of a hydrological model that gives point predictions). However, existing un-

certainty performance criteria not only provide additional information, but also are largely robust against the DAMN. Further,

uncertainty plays an important role for hydrological predictions and should thus be included in our benchmarking efforts.

Code and data availability. We will make the code and data for the experiments and data of all produced results available online. The code255

for the experiments can be found at https://github.com/danklotz/a-damn-paper/tree/main. The hydrological simulations are based on the data

from Kratzert et al. (2019) and based open source Python package NeuralHydrology (Kratzert et al., 2022). The streamflow that we used are

from the publicly available CAMELS dataset by Newman et al. (2015) and Addor et al. (2017).
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Appendix A: Exploring a situation-equitable Nash–Sutcliffe Efficiency

A modified NSE could also evaluate each sample differently and evaluate situations that are easy to predict more strictly and

situations that are difficult to predict less strictly. We refer such a modification the Situation-Equitable NSE (SENSE). A

specific implementation that that uses the design principles from Sect. 2.2 is given by325

SENSE = 1−
∑T

t=1
1

(ot−µ̂t)2
(ot− st)2

∑T
t=1(ot− µ̂t)2

. (A1)

Here, µ̂2
t is an estimation for the observational variance at time t, which we estimate by using a nearest neighbor approach that

draws from a reference set:

µ̂t =
1
K

K∑

k=1

kNN(ct,CR,k), (A2)

where ct = [ot−9,ot−8 . . . ,ot−1,ot] is a situation vector containing the current observation and additional context in the330

form of preceding runoff values of the last 10 day, bmCR = {ck,ck−1, . . . ,c0} is a reference storage, and kNN yields the last

observation ok within ĉk = [ok−9,ok−8, . . . ,ok−1,ok], which in itself is the k-th nearest neighbor of ct within bmCR. That is,

we try to weight each given timestep t by finding an approximation to the conditional variance of said timestep by taking the

runoff observations in ct and using the kNN regressor to find the k most similar runoff vectors. From these we then derive a

situational estimation of the variance. Thus, the neighborhood of the kNN algorithm serves as the locality and its mean is our335

estimator for the expectation.

As a metric, SENSE would introduce two hyper-parameters: k and C. It would also be possible to extend it and allow for

arbitrary measures of similarity. Our analysis of the relative importance of choice k shows that SENSE that the parameter is not

particularly sensitive (Fig. A1). If one wants to develop more sophisticated extensions one could use more nuanced similarity

measures and also include explanatory variables (e.g., meteorological forcings) to better localize semantically similar samples340

(e.g., only match similar flow values in a rising limb).

Appendix B: Connections between global and local performance criteria

In the following, we consider a dataset DT = {(ot,st) | t ∈ 1,2, . . . ,T} with tuples of observations ot ∈ Rm and simulation

values st ∈ Rm that correspond to the index t (which can, but not necessarily has to, correspond to a time step). In general ot

and st are vectors, but, for the sake of simplicity, in the following we will only discuss the special case where they are scalars.345

This choice does not result in any loss of generality.

Definition B.1. A partitioning of DT , with the number of partitions denoted by Z, is a sequence of disjoint sets A1,A2, ... so

that their union yields DT . That is:
⋃Z

z=1 Az = DT .

A specific partition Az of DT is hence given by Az = {(st,ot) | t ∈ 1,2, . . . ,T and 1(ot,st)∈Az
= 1}, where 1(ot,st)∈Az

is

an indicator function that returns 1 if the criteria for the desired partition are met by the datapoint at t and 0 otherwise. We350
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Figure A1. Approximation behavior of the SENSE, given the LSTM ensemble from Kratzert et al. (2019). The test data for a basin comprises

10 years of daily data (i.e., 3650 data points). Thus, 800 neighbors consider approximately 20% of the data for each time step. Note that the

scale of the x-axis is chosen in a way that the NSE appears as a straight vertical line (since its values are very high in comparison).

will always assume that the partitions are chosen so that a given performance criterion can be reasonably evaluated. To give an

example: for the NSE this would mean that no partition with less than two data-points can be created (since then the sample

variance of the observations would be undefined), and it is not allowed to choose the partitions so that all observation values

are the same (again, because then the sample variance of the observation would be zero). For any practical application this is

not a strong assumptions.355

The indicator function for constructing Az trivially implies Az ⊆DT and leads to a convenience index function IAZ
that we

will use to sum over the properties of a partition:

IAZ
(x) =

T∑

t=1

1(ot,st)∈Az
∗xt, (B1)

where x here is a placeholder variable. We also define the model error as et = ot− st, and will, for convenience, omit the

function arguments and brackets where it is clear from the context. For example:360

1. IAZ
(y) =

∑T
t=1 1(ot,st)∈Az

∗ yt.

2. IAZ
(1) =

∑T
t=1 1(ot,st)∈Az

is the number of all elements in Az (that is, the size of the set Az).

3. IAZ
et := IAZ

(et) =
∑T

t=1 1(ot,st)∈Az
∗ et is the sum of the errors (i.e., the bias) from the elements in Az .
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B1 Generality

Without loss of generality we will prove all the below properties with two partitions for the sake of simplicity. The results365

generalize to higher numbers of partitions by recursively applying the same logic.

To illustrate this, let L denote a performance criterion (where we use LAz
to express that we evaluate over the data in Az),

which obeys

LAi
≤ LAj

=⇒ LDT
≤ LAj

, (B2)

where Ai and Aj are two partitions of the dataset DT . In words, assumption B2 enforces that if the loss for one partition370

is smaller than the loss for a second one, then this implies that the loss for the overall data will also be smaller for the second

partition.

Proposition B.2. This inequality also holds if we divide DT into three partitions Aa,Ab,Ac. That is:

LAa
≤ LAb

≤ LAc
=⇒ LDT

≤ LAc
(B3)

also holds.375

Proof. To prove this, we use the fact that, by assumption B2, if LAa
≤ LAb

then this implies that LAa∪Ab
≤ LAb

. Formally,

LAa ≤ LAb
=⇒ LAa∪Ab

≤ LAb
,

and therefore

LAa ≤ LAb
≤ LAc =⇒ LAa∪Ab

≤ LAb
≤ LAc .

Further,380

LAa∪Ab
≤ LAc

=⇒ LAa∪Ab∪Ac
≤ LAc

also holds by assumption B2, so we can conclude that Eq. (B3) is true.

This nested form of evaluation can be repeated no matter how many partitions there are and it can also be repeated for

different implications. Therefore, we can analyze the behavior of two partitions without loss of generality.

B2 Mean squared error385

The sample MSE for a partition AX ∈DT is defined as:

MSE(Ax) =
IAX

e2
t

IAX

. (B4)

Proposition B.3. Given two partitions, Ai ⊂DT and Aj ⊂DT , with MSEAi ≤MSEAj , the MSEDT
is bound by MSEAi ≤

MSEDT
≤MSEAj

.
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Proof. Expanding and rearranging MSEAi
≤MSEAj

gives:390

IAJ
∗ IAI

e2
t ≤ IAI

∗ IAJ
e2
t .

If we expand on both sides by IAI
∗ IAI

e2
t , we get:

IAJ
∗ IAI

e2
t + IAI

∗ IAI
e2
t ≤ IAI

∗ IAJ
e2
t + IAI

∗ IAI
e2
t ,

(IAJ
+ IAI

) ∗ IAI
e2
t ≤ IAI

∗ IDT
e2
t ,

IAI
e2
t

IAI

≤ IDT
e2
t

IDT

,395

MSEAi ≤MSEDT
.

Hence, the smaller MSE of the two partitions is also smaller than the MSE of the whole dataset. Inversely, the larger of the

MSEs of the two partitions is larger than the MSE of the whole dataset — which can be shown analogously to the provided

derivation.

Thus, we can summarize the results of our proof with following relationship:400

MSEAi
≤MSEDT

≤MSEAj
.

B3 Weighted mean squared error

The sample weighted mean squared error WMSE for a partition AX ∈DT is defined as:

WMSE(Ax) =
IAX

wt ∗ e2
t

IAX
wt

, (B5)

where wt are the weights given to each individual sample.405

Proof. The proof is analogous to proof B2. Despite the redundancy we show it in the following for the sake of completeness.

Expanding and rearranging WMSEAi
≤WMSEAj

gives:

IAJ
wt ∗ IAI

wte
2
t ≤ IAI

wt ∗ IAJ
wte

2
t .

If we expand on both sides by IAI
wt ∗ IAI

wte
2
t , we get:

IAJ
wt ∗ IAI

wte
2
t + IAI

wt ∗ IAI
wte

2
t ≤ IAI

wt ∗ IAJ
wte

2
t + IAI

wt ∗ IAI
wte

2
t ,410

(IAJ
wt + IAI

wt) ∗ IAI
wte

2
t ≤ IAI

wt ∗ IDT
wte

2
t ,

IAI
wte

2
t

IAI
wt

≤ IDT
wte

2
t

IDT
wt

,

WMSEAi ≤WMSEDT
.

Hence, the smaller WMSE of the two partitions is also smaller than the WMSE of the whole dataset. Inversely, the larger of

the WMSEs of the two partitions is larger than the WMSE of the whole dataset — which can be shown analogously to the415

provided derivation.

18

https://doi.org/10.5194/hess-2024-59
Preprint. Discussion started: 29 February 2024
c© Author(s) 2024. CC BY 4.0 License.



Proposition B.4. Given two partitions, Ai ⊂DT and Aj ⊂DT , with WMSEAi
≤WMSEAj

, the WMSEDT
is bound by

WMSEAi
≤WMSEDT

≤WMSEAj
.

B4 Low Effort Nash-Sutcliffe Efficiency

For a partition Ax ∈DT the LENSE is defined as:420

LENSEAX
= 1−

1
IAX

IAX
e2
t

1
IXR

IXRe
2
t

, (B6)

where XR defines the data of the reference partition.

Proposition B.5. Given two partitions, Ai ⊂DT and Aj ⊂DT , with LENSEAi
≤ LENSEAj

, the LENSEDT
is bound by

LENSEAi
≤ LENSEDT

≤ LENSEAj
.

Proof. We rewriting Eq. (B6) in terms of MSE as425

LENSEAX
= 1− MSEAX

1
IXR

IXRe
2
t

. (B7)

By inserting Eq. (B7) into the inequality from proposition B.5 and rearranging we get:

MSEAi

1
IXR

IXRe
2
t

≥ MSEDT

1
IXR

IXRe
2
t

≥ MSEAj

1
IXR

IXRe
2
t

. (B8)

Here, the denominator is a constant (we can also relate it to the WMSE by observering that wt = w = 1
1

IXR
IXR e2

t
). Thus, we

can reduce the equation to obtain:430

MSEAi
≥MSEDT

≥MSEAj
, (B9)

which we know to be true from proof B2.

B5 Situation-equitable Nash–Sutcliffe Efficiency

The SENSE for a partition Ax ∈DT is defined as:

SENSEAX
= 1−

IAX

1
(ot−µ̂t)2

(ot− st)2

IAX

1
(ot−µ̂t)2

, (B10)435

where µ̂t is an estimation for the conditional expectation of the observations of at timestep t. Appendix A discusses a potential

approach for obtaining such an estimation.

Proposition B.6. Given two partitions, Ai ⊂DT and Aj ⊂DT , with SENSEAi ≤ SENSEAj , the SENSEDT
is bound by

SENSEAi ≤ SENSEDT
≤ SENSEAj .

Proof. It is easy to see that the right hand side of Eq. (B10) is a special case of the WMSE with w = 1 . Thus, the proof is440

analogous to proof B3.
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B6 Nash–Sutcliffe Efficiency

The NSE for a partition AX ∈DT is defined as:

NSEAX
=

IAX
e2
t

ōX
. (B11)

Proposition B.7. Given two partitions, Ai ⊂DT and Aj ⊂DT , with NSEAj
≥NSEAi

; NSEDT
is bound by below by the445

smaller NSE value of the two partitions — i.e., NSEAi
.

Proof. Following the convention from B.3 and Eq. (B11), we get:

1− IAJ
e2
t

IAJ
(ot− ōJ)2

≥ 1− IAI
e2
t

IAI
(ot− ōJ)2

.

By subtracting 1, multiplying by −1, and rearranging IAJ
e2
t and IAI

e2
t we get:

IAJ
e2
t

IAI
e2
T

≤ IAJ
(ot− ōJ)2

IAI
(ot− ōI)2

,450

adding 1 to both sides and substituting et gives:

IAJ
e2
t

IAI
e2
t

+ 1≤ IAJ
(ot− ōJ)2

IAI
(ot− ōI)2

+ 1,

and

IAJ
e2
t

IAI
e2
t

+
IAI

e2
t

IAI
e2
t

≤ IAJ
(ot− ōJ)2

IAI
(ot− ōI)2

+
IAJ

(ot− ōJ)2

IAJ
(ot− ōJ)2

. (B12)

At this stage we note that ō(Ai) minimizes the squared distance for the samples in Ai, and vice versa ō(Aj) minimizes for455

samples in Aj . Any other choice than ō(Ai) (or ō(Aj), respectively) in their respective partitions leads to a larger sum. For

example:

IAJ
[ot− ōJ)]2 + IAI

[ot− ōI)]2 ≤ IAJ
[ot− ōT ]2 + IAI

[ot− ōT ]2,

which we can use to bind the right-hand side of Eq. (B12). After some rearrangement, we have

IDT
e2

IAI
e2
≤ IDT

[ot− ōT ]2

IAI
[ot− ōI)]2

.460

From here we can manipulate the equation to reintroduce the canonical formulation of the NSE and we get:

1− IDT
e2
t

IDT
(ot− ōT )2

≥ 1− IAI
e2
t

IAI
(ot− ōI)2

,

NSEDT
≥NSEAi .

Thus, the lower NSE of the two partitions is the lower bound of the NSE of the whole dataset.

This means that that we obtain the following relation for the NSE:465

NSEAi
≤NSEDT

≤ 1.
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B7 Pearson’s correlation coefficient

The sample correlation coefficient over a partition AX ⊆DT is

rAX
=

IAX
(ot− ōX)(st− s̄X)√

IAX
(ot− ōX)2

√
IAX

(st− s̄X)2
. (B13)

In most cases, rAz is independent from r(DT ) — as is demonstrated by Simpson’s Paradox (Sec. 1) — and we can only470

make claims for special cases. For example, if r(DT ) = 1 (or−1) then it follows that rAz = 1 (or−1). Similarly, the following

proposition shows that if we assume the partitions have zero mean for the observations (ōX = 0) and the simulations (s̄X = 0),

then rAz
is lower-bounded by r(DT ):

Proposition B.8. If we assume that all partitions have centered observations and model outputs, we can bind the sample

correlation from above by the higher one; i.e.: r(DT )≤ rAj .475

Proof. By applying the assumption from proposition B.8 to Eq. (B13), we get:

rAz =
IAX

(ot)(st)√
IAX

(ot)2
√

IAX
(st)2

.

Using rAi
≤ rAj

results in:

IAI
(ot)(st)√

IAI
(ot)2

√
IAI

(st)2
≤ IAJ

(ot)(st)√
IAJ

(ot)2
√

IAJ
(st)2

,

IAI
(ot)(st)

IAJ
(ot)(st)

≤
√

IAI
(ot)2

√
IAI

(st)2√
IAJ

(ot)2
√

IAJ
(st)2

,480

IAI
(ot)(st) + IAJ

(ot)(st)
IAJ

(ot)(st)
≤

√
IAI

(ot)2
√

IAI
(st)2 +

√
IAJ

(ot)2
√

IAJ
(st)2√

IAJ
(ot)2

√
IAJ

(st)2
,

IDT
(ot)(st)

IAJ
(ot)(st)

,≤
√

IDT
(ot)2

√
IDT

(st)2√
IAJ

(ot)2
√

IAJ
(st)2

,

hence:

rDT
≤ rAj

.485

Thus, if all data (observations and model output) in the partitions is centered, then the higher correlation of the two partitions

is an upper bound for the overall correlation.

Appendix C: More experimental results

C1 Model evaluation with the NSE and the LENSE for different models

This section shows alterations of the first part of our analysis (Sect. 2.2) using different models.490
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Figure C1. Empirical cumulative distribution functions of the NSE (black, dotted line) and the LENSE (green line) for the 531 CAMELS

basins and an ensemble of calibrated HBV models from (see Kratzert et al., 2019).
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Figure C2. Empirical cumulative distribution functions of the NSE (black, dotted line) and the LENSE (green line) for the 531 CAMELS

basins and the SAC-SMA model (see Kratzert et al., 2019).
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Figure C3. Empirical cumulative distribution functions of the NSE (black, dotted line) and the LENSE (green line) for the 531 CAMELS

basins and the VIC-conus model (see Kratzert et al., 2019).

C2 Two more experimental results

This appendix shows two additional sweeps of our experiment from Sec. 2.1. One has NSElow = 0.25 (Fig. C4) and the other

NSElow = 0.75 (Fig. C5).

Author contributions. DK had the initial idea for the paper. DK and MG set up the experiment (and also many negative results along the way).

MG came up with the first version of the SENSE criterion. DK and MG realized the theoretical appendix. DK, GN, and JZ conceptualized495

the paper structure. All authors contributed to the analysis of the results, the discussion of the interpretations, and the creation of the figures,

and the writing process,

Appendix D: Flow–duration curve based metrics and the DAMN.

This appendix provides a short comment on why many of the currently used metrics based on flow–duration curves do not

guard against the DAMN. Specifically, we discuss the case of the percent bias of the bottom 30% low flow range (FLV) and500

percent bias of the top 2% high flow range (FHV) as defined in Yilmaz et al. (2008). Both the FLV and the FHV first divide

the data based on the flow-duration curve and then compute the percent bias for the flow–duration values that fall within the

predefined partition. This approach has three problems with regard to the DAMN:

1. The a-priori set thresholds (30% and 2%) are too coarse to capture situational differences in model performance. For

example, a model that captures rain–driven high-flows well, but melt–driven ones badly might still exhibit a good FHV505

if the former occur frequently enough to fall over the threshold. This problem is made worse by point 2.
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Figure C4. Rerun of our experiment (Sec. 2.1) with NSElow fixed at 0.25. Each pixel in the plot represents an “interval score”, which is

zero if the overall model performance NSEall is within the interval spanned by model performance in the low-flow partition, NSElow, and

the high-flow partition, NSEhigh. In the other case, the interval score is negative if NSEall is lower than the interval, and positive if NSEall is

higher (see Fig. 3).

2. The relative bias can be compensated by varying situational performance. For example, a model that overestimates some

set of peaks, but equally underestimates another set of peaks can have an FHV that is close to 0 (nearly perfect) —

despite the model performing badly for all peaks. This problem is exacerbated by point 3.

3. The flow duration curve breaks temporal locality: The temporal occurrence of the events is not considered, so the behav-510

ior in one situation can compensate for the behavior in another. For example, if a model underestimates the highest peak

in the data but overestimates another unrelated event, the FHV can be close to zero (i.e., nearly perfect).
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Figure C5. Rerun of our experiment (Sec. 2.1) with NSElow fixed at 0.75. Each pixel in the plot represents an “interval score”, which is

zero if the overall model performance NSEall is within the interval spanned by model performance in the low-flow partition, NSElow, and

the high-flow partition, NSEhigh. In the other case, the interval score is negative if NSEall is lower than the interval, and positive if NSEall is

higher (see Fig. 3).
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